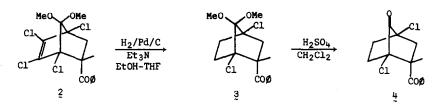

SYNTHESIS OF A NORCUBANE DERIVATIVE Charles L. Perrin* and Mong-Tseng Hsia Department of Chemistry, University of California, San Diego

La Jolla, California 92037, USA


(Received in USA 25 October 1974; received in UK for publication 28 January 1975)

The recent synthesis by Harless and Monti¹ of tricyclo[3.1.1.0^{3,6}]heptane-6-carboxylic acid prompts us to report our synthesis of another representative of this novel ring system ("norcubane"):

Diels-Alder reaction of tetrachlorocyclopentadiene dimethyl ketal² with a 25% excess of methacrylophenone, generated <u>in situ</u> from α -methyl- β -dimethylaminopropiophenone hydrochloride³ plus one equivalent of aqueous sodium acetate produced⁴ a 1:2 mixture of <u>exo-5-benzoyl-1,2,3,4-</u> tetrachloro-7,7-dimethoxy-5-methylbicyclo[2.2.1]heptene-2 (1), mp 138-140¹/₂°, and its <u>endo</u> epimer, mp 93¹/₂-95° (2). These were separable by crystallization from ethanol. They are differentiated

by their pmr spectra (Table I). The C-methyl of 1 is shifted upfield by its proximity to the C-C double bond, and the methoxyls of 1 are more separate, owing to the proximity of one to the carbonyl group. Moreover, the carbonyl frequency of 1 is higher, owing to steric interaction with the <u>syn</u> methoxyl, which inhibits conjugation between phenyl and carbonyl. Hydrogenation of 2 over Pd/C in the presence of triethylamine⁵ produced <u>endo-</u>2-benzoyl-1,4-dichloro-7,7-dimethoxy-2-methylbicyclo[2.2.1]heptane (3). Hydrolysis⁵ of 3 produced <u>endo-</u>2-benzoyl-1,4-dichloro-2methylbicyclo[2.2.1]heptan-7-one (4), mp 105-8°. Both 3 and 4 could be photoisomerized to alcohols (5 and 6), but the epimer of 3, mp 135½-7°, which could be obtained by hydrogenation of

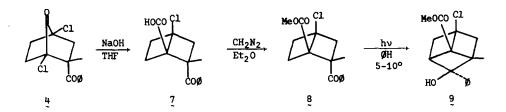
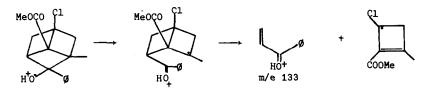

1, was inert to irradiation; these results further establish the stereochemistry of 1 and 2.

Table I. Spectroscopic Data


Compound	0-Me (δ)	<u>C-Me (δ)</u>	сн є сн ₂ (б)	Phenyl (8)	ir (cm ⁻¹)
1	3.40, 3.51	1.43	2.19,3,07(2H,J=11)	7.20-7.80(5H,m)	1695
2	3.47, 3.53	1.82	2.47,2.83(2H,J=11)	7.21(3H,m),7.55(2H,m)	1684
3	3.42 (2Me)	1.67	1.7-2.4(5H,m),3.05(1H)	7.23(3H,m),7.67(2H,m)	1684
4		1.52	1.9-2.8(5H,m),3.27(1H,J=12)	7.33(3H,m),7.78(2H,m)	1678,1812
5	3.52 (2Me)	1.35	1.6-2.8(6H,m)	7.18(5H,s)	3600(broad)
ę		1.42	1.8-3.0(5H,m)	7.18(5H,s)	3600,1790
?		1.67	2.3~3.2(6H,m)	7.55(3H,m),7.82(2H,m)	3000(vbroad) 1692(broad)
ş	3.73	1.60	2.3-3.2(6H,m)	7.31(3H,m),7.82(2H,m)	1727,1669
5	3.65	1.40	2.1-3.0(6H,m)	7.17(5H,s)	3500(broad) 1724

Ring contraction of $\frac{1}{2}$ with NaOH in dry THF⁵ at 0° produced <u>endo-</u>2-benzoyl-4-chloro-2-methylbicyclo[2.2.0]hexane-1-carboxylic acid (7), mp 134-7°, in 70% yield, along with a ring-opened product, as judged by its nmr integral and especially by a 3.43 δ peak due to CHC1. This latter acid was readily separable, since its sodium salt was only slightly soluble in aqueous solutions. Irradiation of 7 produced only olefinic material, which polymerized on standing. Therefore

conversion of 7 to its methyl ester (8) was effected with diazomethane. Crude preparations of this ester showed an additional peak at 1.77 δ , which we ascribe to the 1-chloro-4-carboxylic acid isomer. A similar upfield shift of methyl adjacent to carbomethoxy is observed in methyl cis-2-methyl-cyclobutanecarboxylate.⁶ It is on the basis of this comparison that the structural assignment of 7 was made.

Irradiation of § (0.1% in benzene, 450W Hanovia lamp with Pyrex filter, cooling with icewater), followed by chromatography on silica gel, produced a good yield of methyl 5-chloro-2hydroxy-1-methyl-2-phenyltricyclo[3.1.1.0^{3,6}]heptane-6-carboxylate (9). The pmr and ir spectra are consistent with this structure and inconsistent with any monocyclic or bicyclic isomer. The mass spectrum showed m/e: 292 & 294 (M^+), 197 (8), 160 (8), 153 (12), 147 (7), 133 (6), 106 (9), 105 (100), 91 (10), 77 (46). Especially notable is the m/e 133 peak, which is absent in the precursors of 9. We attribute this to the fragmentation

These data do not exclude the tricyclo[3.2.0.0^{3,6}]heptan-2-ol isomer,⁷ but photochemical cyclopentanol formation seems to require weakened δ C-H bonds.⁸ Furthermore, cyclobutanol formation is quite common,^{7,9,10} and molecular models suggest that the transition state⁸ for abstraction of the γ hydrogen in § is, as usual, less strained than that for the δ hydrogen. Assignment of the stereochemistry at C₂ is based on analogy to the observations of Lewis <u>et al.</u>,⁹ but definitive proof must await an X-ray diffraction study of a crystalline derivative. Thus we have prepared another example of the tricyclo[3.1.1.0^{3,6}]heptane ("norcubane") ring system. This differs from the carboxylic acid of Harless and Monti¹ in having additional functionality. Furthermore, it arises by a different and shorter route, one that features not only a Favorskii rearrangement to a bicyclo[2.2.0]hexane but also a photochemical formation of the third four-membered ring.

Acknowledgment. This research was supported by an Academic Senate Research Grant and by an Alfred P. Sloan Research Fellowship (to C.L.P.).

References

- 1. J. M. Harless and S. A. Monti, J. Amer. Chem. Soc., 26, 4714 (1974).
- 2. P. G. Gassman and J. L. Marshall, Org. Syn., 48, 69 (1968).
- 3. E. P. Knott, J. Chem. Soc., 1947, 1190.
- 4. Although methacrylophenone was formed immediately, this reaction required 3-4 days of refluxing. The methacrylophenone went into the organic phase, but competing polymerization could not be avoided.
- K. V. Scherer, Jr., Tetrahedron Letters, 1966, 5685; W. G. Dauben, J. L. Chitwood, and
 K. V. Scherer, Jr., J. Amer. Chem. Soc., 20, 1014 (1968).
- P. G. Gassman and K. T. Mansfield, J. Org. Chem., <u>32</u>, 915 (1967); cf. R. Granger, J. Boussinesq, J. P. Girard, and J.-C. Rossi, Bull. Soc. Chim. France, <u>1969</u>, 2801.
- A. Padwa and W. Eisenberg, J. Amer. Chem. Soc., 94, 5859 (1972), where this ring system is numbered as a tricyclo[3.2.0.0^{3,7}]heptane.
- 8. P. J. Wagner, P. A. Kelso, A. E. Kemppainen, and R. G. Zepp, J. Amer. Chem. Soc., 94, 7500 (1972).
- 9. F. D. Lewis, R. W. Johnson, and R. A. Ruden, J. Amer. Chem. Soc., 94, 4292 (1972).
- 10. P. J. Wagner, Accts. Chem. Res., 4, 168 (1971).